skip to main content


Search for: All records

Creators/Authors contains: "Finelli, Cynthia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 13, 2024
  2. This is a full Innovative Practice paper. Engineering professionals are increasingly called on to serve as “public welfare watchdogs” by paying heed to ways in which complex technologies can impact society and intervening when ethical issues arise. Though it is a goal of engineering education to train engineers to recognize and understand their responsibilities to the safety, health, and welfare of the public, research suggests that students are inadequately prepared to address such issues in practice. To address this concern, we designed and piloted a course module for electrical engineering master’s students to help them better address their public welfare responsibilities. In this paper, we provide a detailed description of the course module, including reflection prompts, in-class presentations, breakout group activities, discussion prompts, and post-class assignments. We also present results from our pilot, including a summary of student responses to the reflection and discussion prompts and an overview of students’ course feedback. 
    more » « less
  3. Postindustrial societies are characterized by complex technological objects and systems. The publics therein are increasingly reliant on engineers to take public welfare into account when designing and maintaining these objects and systems and raise awareness when public welfare is threatened. The training engineers receive in their engineering undergraduate education is thus expected to foster their sense of responsibility to public welfare, but such training may be absent or insufficient. In this paper, we draw on a survey of 120 employed engineers in the US to assess the extent to which they received formal public responsibility training in their undergraduate education and to assess the relationships between this training and their response to one of four randomly assigned ethical dilemmas. We find that engineers who reported receiving training in public welfare responsibilities as undergraduate students felt better prepared to address public welfare issues than those who had not received such training. Individuals with training in public welfare responsibilities were less likely to identify the ethical dilemma as irrelevant to their work, indicate that such dilemmas happen all the time, be uncomfortable reporting the issue, and believe that their colleagues might respect them less if they report. These findings have implications for improving engineering ethics education and ethical conduct trainings within engineering practice more broadly. 
    more » « less
  4. Abstract Background

    Despite well‐documented benefits, instructor adoption of active learning has been limited in engineering education. Studies have identified barriers to instructors’ adoption of active learning, but there is no well‐tested instrument to measure instructors perceptions of these barriers.

    Purpose

    We developed and tested an instrument to measure instructors’ perceptions of barriers to adopting active learning and identify the constructs that coherently categorize those barriers.

    Method

    We used a five‐phase process to develop an instrument to measure instructors’ perceived barriers to adopting active learning. In Phase 1, we built upon the Faculty Instructional Barriers and Identity Survey (FIBIS) to create a draft instrument. In Phases 2 and 3, we conducted exploratory factor analysis (EFA) on an initial 45‐item instrument and a refined 21‐item instrument, respectively. We conducted confirmatory factor analysis (CFA) in Phases 4 and 5 to test the factor structure identified in Phases 2 and 3.

    Results

    Our final instrument consists of 17 items and four factors: (1) student preparation and engagement; (2) instructional support; (3) instructor comfort and confidence; and (4) institutional environment/rewards. Instructor responses indicated that time considerations do not emerge as a standalone factor.

    Conclusions

    Our 17‐item instrument exhibits a sound factor structure and is reliable, enabling the assessment of perceived barriers to adopting active learning in different contexts. The four factors align with an existing model of instructional change in science, technology, engineering, and mathematics (STEM). Although time is a substantial instructor concern that did not comprise a standalone factor, it is closely related to multiple constructs in our final model.

     
    more » « less
  5. In this study, we examined the relation between students’ affective and behavioral response to active learning, the influence of students’ belongingness and their self-efficacy on these responses, and the moderating influence of students’ gender-identity. We found that, despite mean differences in value, positivity, and distraction, there were not gender differences in the pattern of relations between variables. For both groups, belongingness and self-efficacy independently predicted students’ affective response and their evaluation of the class. Belongingness also predicted students’ participation in class. These findings suggest that student-level factors play an important role in how students respond to active learning and that fostering an atmosphere that supports both self-efficacy and belongingness may be beneficial for all students. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. Active learning increases student learning, engagement, and interest in STEM and subsequently, the number and diversity of graduates. Yet, its adoption has been slow, partially due to instructors’ concerns about student resistance. Consequently, researchers proposed explanation and facilitation instructional strategies designed to reduce this resistance. Using surveys from 2-year and 4-year institutions including minority-serving institutions, we investigate the relationship between students’ affective and behavioral responses to active learning, instructors’ use of strategies, and active learning type. Analyses revealed low levels of student resistance and significant relationships between both explanation and facilitation strategy use and positive student responses. 
    more » « less